IDEC Chip Design Contest

Design of High-Efficiency CMOS Radio-Frequency Rectifier For Wireless Power Transfer Systems

SeungHyeon Park*, Taeyeong Kim, and Ickhyun Song Department of Electronic Engineering, Hanyang University, *obun1266@hanyang.ac.kr

I. Introduction

CMOS Rectifier : Convert AC voltage to DC voltage Disadvantages of CMOS Rectifier: Low PCE at low and high RF input power. **Solution** :

Problems with low RF input power : Add a boosting circuit

Problem 1: The low turn-on voltage of the CMOS Rectifier's

III. Simulation Result

Chip micro graph

Measurement debugging and analysis in progress

Problem 2: The CMOS rectifier provides a low PCE because the reverse leakage current increases as the gate voltage of the PMOS (M_{P1} , M_{P2}) increases at high RF input power.

Solution: Reduce the reverse leakage current by adding a self-biasing circuit to lower the gate voltage. -> PCE increase

\mathbf{R}_{1} (k Ω) **Performance Comparison**

400

Parameter	This Work*	[4]	[8]	[9]	[14]
Technology (µm)	0.18	0.18	0.18	0.18	0.18

1000

800

600

Frequency (Hz)	1G	915M	953M	900M	953M
$R_{L}(\Omega)$	100k	5k	10k	100k	10k
P _{in} (dBm)	-27	-3.7	-12.5	-19.6	-16.8
Peak PCE (%)	79	72.3	67.5	66	70
DR (dB)	7.1	11	4.8	6.4	6.5
Topology	BS	BB	DD	DD	DTR

Acknowledgment

200

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

